Research Track

Jefferson College of Population Health has three trimesters: Fall, Spring, & Summer. Each trimester has two 7-week terms. Students can choose a recommended pathway that allows them to complete a master's in 2-4 years by taking a class in every 7-week term or once a trimester, or a certificate in 1-2 years. 

Skipping a term or trimester will mean a reassessment of pathways, with the assistance of advisors, and an extension of time-to-degree. Please refer to Yearly Course Schedule for course availability and pre-requisites. Subject to change.

Master's Pathways

Year 1
  • Fall A: AHE 502 Statistics I
  • Fall B: AHE 505 Statistics II
  • Spring A: HDS 518 Supervised Learning & Unsupervised Learning: Prediction & Classification 
  • Spring B: HDS 501 Health Informatics & Analytics
  • Summer A: HDS 500 Fundamentals of Data Wrangling 
  • Summer B: HDS 502 Exploratory Data Analysis & Unsupervised Learning
Year 2
  • Fall A: AHE 501 Economics of Health Insurance or
    POP 500 Essentials of Population Health
  • Fall B: HDS 532 Data Visualization
  • Spring A: HDS 519 Deep Learning and AI Systems
  • Spring B: Elective (Program Director approval needed)
  • Summer: HDS 651 Capstone Research Project

Year 1
  • Fall A: AHE 502 Statistics I
  • Spring B: AHE 505 Statistics II
  • Summer A: HDS 532 Data Visualization 
Year 2
  • Fall B:  HDS 501 Health Informatics & Analytics
  • Spring A: HDS 500 Fundamentals of Data Wrangling
  • Summer A: AHE 501 Economics of Health Insurance or POP 500 Essentials of Population Health 
Year 3
  • Fall B: HDS 502 Exploratory Data Analysis & Unsupervised Learning
  • Spring A: HDS 518 Supervised Learning & Unsupervised Learning: Prediction & Classification
  • Summer B: HDS 519 Deep Learning and AI Systems
Year 4
  • Fall A or B: Elective (Program Director approval needed)
  • Spring: HDS 651 Capstone Research Project

Year 1
  • Spring A: AHE 502 Statistics I
  • Spring B: AHE 505 Statistics II
  • Summer A: HDS 500 Fundamentals of Data Wrangling
  • Summer B: HDS 518 Supervised Learning & Unsupervised Learning: Prediction & Classification
  • Fall A: AHE 501 Economics of Health Insurance or
    POP 500 Essentials of Population Health 
  • Fall B: HDS 502 Exploratory Data Analysis & Unsupervised Learning
Year 2
  • Spring A: Elective (Program Director approval needed)
  • Spring B: HDS 501 Health Informatics & Analytics
  • Summer A: HDS 532 Data Visualization
  • Summer B: HDS 519 Deep Learning and AI Systems
  • Fall: HDS 651 Capstone Research Project

Year 1
  • Spring A: AHE 502 Statistics I
  • Summer B: HDS 518 Supervised Learning & Unsupervised Learning: Prediction & Classification
  • Fall B: AHE 505 Statistics II
Year 2
  • Spring A: HDS 500 Fundamentals of Data Wrangling
  • Summer A: HDS 532 Data Visualization 
  • Fall B: HDS 502 Exploratory Data Analysis & Unsupervised Learning
Year 3
  • Spring A or B: Elective (Program Director approval needed)
  • Summer A: AHE 501 Economics of Health Insurance or
    POP 500 Essentials of Population Health 
  • Fall B: HDS 501 Health Informatics & Analytics
Year 4
  • Spring A: HDS 519 Deep Learning and AI Systems
  • Summer:  HDS 651 Capstone Research Project